Liquid Argon TPCs
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Single vs. dual phase TPCs

“Light-based” dual phase “Light & charge-based” dual phase

Single phase Light and charge created in primary interaction Light and charge created in primary interaction
Light collected by PMTs Also detect secondary light created when Amplify charge extracted into gas phase
lonization charge detected at wires/pads ionization charge is extracted into gas phase Detect amplified charge at wires/pads
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Sense Wires
V'Y V wire plane waveforms

Liquid Argon TPC
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» How low in energy do you need to detect events?
» If very low energy, scintillation detection is probably better suited than ionization
» A gaseous TPC could also be considered (with tradeoff in event rate)
J.L. Raaf | Workshop on Fundamental Physics at the Second Target Station 2019/07/27




Liquid vs. Gas

Drift velocity in LAr at E = ~500 V/cm: 1.6 mm/us

» For a gaseous argon-based TPC, using pure argon is not easy for detector HV
stability reasons

» Usually add O(10%) CH,4 or CO,, which also has the benefit of increasing drift velocity
to ~5-10 em/us

» Spatial resolution
» Existing 3mm wire pitch LArTPCs achieve ~1mm resolution

» Existing gaseous TPCs achieve ~100’s um resolution

» Diffusion of drifting electron cloud affects spatial resolution
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ArgoNeuT - LArIAT - PixLAr

» TPC ! -
» Rectangular TPC with horizontal drift (47 cm, 0.25t active) \

» ArgoNeuT/LArlAT: 2 readout wireplanes at +60° (induction, collection)
wireplane (vertical wires, field shaping)
» ArgoNeuT: warm electronics

» LArlAT: BNL + MSU cold electronics, Most data collected with 4mm wire spacing (480
readout channels total), but also collected data w/5mm and 3mm spacing

» PixLAr: 1 plane of rectangular pads

» Light collection system

— g ; }v
» ArgoNeuT: none - Readout
» LATrlAT/PixLAr: Interior walls of TPC lined with TPB-coated reflective foils ~ ASICs

» LArlAT: 2 cryogenic PMTs view active volume through wireplanes, SiPMs, ARAPUCA
prototype

» PixLAr: ARAPUCA, ArcLight prototype, mounted inside field cage
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MicroBooNE

» TPC
» Rectangular TPC with horizontal drift (2.56 m, ~89t active)

» 3 readout wireplanes (2 induction at £60°, 1 collection
w/vertical wires)

» 3 mm wire pitch (~8200 channels in total)

» Light collection system 2.3m

» Cryogenic PMTs view active volume through wireplanes,
with TPB-coated acrylic plates mounted in front of PMTs v
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Argon Purity

Parameter Value Motivation )
Argon purity <100 ppt O MIP identification at longest drift

Argon purity <2 ppm N» Scintillation light output

LAr Temperature gradient <0.1 K Drift-velocity uniformity

LAr recirculation rate I volume change/day Maintain purity

Cryostat heat load <15 W/m? Minimize convection currents and bubbles
Cryogenic capacity 10 kW Capacity to deal with expected heat load
Cryostat maximum pressure 2.1 bar Determines relief sizing >

» Longer drift requires more strict requirements on O, contamination in the argon

» N, requirement does not scale with drift length
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Argon Purification Concept

Cu O, filter ||

Mole sieve

LAr cryostat

LAr pump
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Purity Monitors

10 inches
UV quartz fiber ——— -3t Xe flash lamp
p - Fi ings anOde grid\ & —
PrM drawing
5 inches
cathode \ground-grid anode

» Ratio of charge at anode and cathode is related to lifetime

Qa/Qc = e tarire/T
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MicroBooNE argon purity

MicroBooNE Liquid Argon Purity
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LArlAT argon purity

~ Electron Lifetime
e 3 ms electron lifetime

» In contrast, LArlAT was a
rollercoaster of O,-equiv
contamination levels...
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Simplified cryo system comparison

1= 1 MicroBooNE

‘i 'Condensers

LArIAT
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Filter I

(H,O & O,)
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' to outside

Filters

Cryostat
Y Cryostat
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Built for LArIAT, but spec’ed
for a ~several-ton-sized TPC

LArIAT .
cryostat
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Infrastructure Needs

CRYOSTAT ® LAar ' AT

2015-06-14 08:19:02

» LAr systems

~ FILTER & GAS ANALYSER
» Cryostat, filters, pumps, i
condenser, etc. | -'

» Supply/storage dewars (LN,, LAr)

» Monitoring & controls

» Power 5 LAr DEWAR

100,00

» 120V/208V typical for electronics
racks, pumps, filters

» Clean power/Noise isolation

» Good grounding scheme

BEAMLINE OVERVIEW
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Other things to consider

» Triggering

» If you don’t necessarily want to rely on accelerator signals, a light collection system will be needed (trigger on
scintillation light to start TPC readout window)

» External triggers (e.g. for through-going cosmics) are useful for calibrations

» Would be nice to do streaming data w/offline triggering?
» E.g., MicroBooNE supernova data stream, uses circular buffer FIFO with external SNEWS alert as delayed trigger

» TPC size & type
» Must balance desired event rate with available space and funding
If lower thresholds are desired, gaseous TPC may be a good choice

>
» Size sets scale for how good the purification system needs to be
>

gize)also sets scale for computing resources needed (e.g., MicroBooNE TPC readout generates ~33 GB/s raw
ata
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Summary

Considering a LArTPC (or GArTPC) at the STS...

» Need to determine what are the desired thresholds (will it be used for event detection only?
Or should it also be able to visualize tracks?) and how many events/year are needed

» Gaseous TPC would have lower event rates, but would be better at visualizing low energy tracks

» How much space is available, and is that large enough for a TPC + infrastructure?

» Cryogenic recirculation/purification is critical for larger LArTPCs and lower energy events

Thank you!
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Random extra slides...
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MicroBooNE cryogenic systems
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ArgoNeuT cryogenic system

sAgTssswas
FROM
CEILING

300W
cryocooler

» Simple system with filtration
and recirculation

ARGON GAS BOTTLES

J.L. Raaf | Workshop on Fundamental Physics at the Second Target Station 2019/07/27



SensL SiPM (6x6
mm?) w/pre-amp

ETL PMT
(2-in diameter)
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gl - _ w/pre-amp
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Secondary & tertiary beam
“stay clear” zones

e
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lonization yields

» Number of ionization electrons released by the
recoiling nucleus (N¢) depends on:

» Average excitation/ionization energy (W = 19.5 eV)
» Relative excitation vs. ionization yield (a = N¢,/N;)

» lon-electron recombination (R), depends on E field,
particle type, argon purity...

» Nuclear quenching (Lg¢) (i.e., secondary scattering)
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» Large uncertainties in recombination models
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ARIS data (NR at E = 200 V/cm)
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WORK DECK

TOP HEAD

MiniCAPTAIN/CAPTAIN

BAFFLE
ASSEMBLY

mmmm e — i

> T P C TPC ASSEMBLY

DEWAR ACCESS PORTS
LIQUID ARGON VOLUME

» Hexagonal TPC with vertical drift
» MiniCAPTAIN prototype: 32 cm drift, 400 kg active
» CAPTAIN: 1.0 m drift, 5 tons active volume

Support frame

- Grid plane

___ Anode plane
~__Alignment pin
__—— Induction U-plane

» 5 wireplanes (3 readout + 2 field-shaping/shielding)
» 3mm wire pitch

» MiniCAPTAIN 1000 channels

» CAPTAIN: 2000 channels

——— Induction V-plane

S __ Field cage
» Light collection system T
__—Cathode plane
» Cryogenic PMTs view active volume through TPB-coated Drift &
windows in cathode plane direction

"~ Support frame
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